大星彩票注册网-大星彩票网址
大星彩票app2023-01-31 16:05

大星彩票注册网

(新春走基层)台湾美食业主盼“团圆”:一起打拼向未来******

  中新网福州1月22日电 (彭莉芳)尽管两岸“小三通”客运航线部分恢复通航了,陈人泽还是选择留在福州过年,筹划“陈家蚵仔煎”的新发展。

  农历正月初一,陈人泽就赶往厦门曾厝垵考察,准备在厦门这个滨海旅游城市的“网红”小渔村寻一家新租铺,扩大“陈家蚵仔煎”的生意版图。

陈人泽正在做“蚵仔煎”。 吕明 摄陈人泽正在做“蚵仔煎”。 吕明 摄

  从独自一人在福州打拼,到给摊铺招徕助手,再到如今有了三个连锁品牌摊铺,陈人泽的生意可谓红红火火。

  “看夏天能不能把儿女们接过来,一家人在大陆团圆,一起打拼。”这是60岁的台湾美食业主陈人泽的兔年“新”愿。

  陈人泽来自台中,在福州市台江区宁化路夜市经营着一家名为“陈家蚵仔煎”的摊铺。进入宁化路夜市,跟着人流走,在人潮最为涌动的摊位前,就能找到忙着做蚵仔煎的陈人泽。

陈人泽正在做“蚵仔煎”。 吕明 摄陈人泽正在做“蚵仔煎”。 吕明 摄

  “价不高,味极鲜,老板很亲切”,加上许多当地网红博主的推荐,让“陈家蚵仔煎”在许多本地美食推荐榜单上名列前茅。往来的食客,也喜欢称陈人泽为“阿泽”。

  陈人泽告诉记者,生意最好的时候在夏天,年龄横跨老中青的食客顶着夏夜余热慕“食”而来,只为尝尝他做的台湾小吃“蚵仔煎”,每日限售三百份。

陈人泽准备从住地出摊。 吕明 摄陈人泽准备从住地出摊。 吕明 摄

  蚵仔煎是闽台传统小吃,“人气”在两地夜市居高不下。磕开鸡蛋,铺上海蛎,倒入地瓜粉浆,待表面煎到金黄,撒上豆芽青菜,再淋上咸甜的酱料,一份软嫩鲜甜的蚵仔煎就“大功告成”。

  在陈人泽看来,蚵仔煎制作简单,风味极佳的关键,在于食材的新鲜和酱汁的地道。

  为此,陈人泽的厨房里没有隔夜食材,鸡蛋、包菜、黄豆芽须赶早市购买,牡蛎则请人从海边送来。下午三点切完菜后,他将西红柿现榨成汁,将糖、盐、蒜、醋按比例搅匀,静置些时。

  “这样做虽麻烦,但味道好!”陈人泽说,酱汁有“新鲜的酸味”,吃时“生津”,是正宗的台湾南部口味。

陈人泽正在清理餐车。 吕明 摄陈人泽正在清理餐车。 吕明 摄

  除夕,他给自己放了个假,用一顿火锅犒劳过去辛劳的一年,与远在台湾的家人视频连线聊家常。

  陈人泽的父母在台湾逢甲夜市卖了六十几年的蚵仔煎,他也耳濡目染,传承了家中的好手艺。他说,自己一辈子就做了三件事,一是年少时在台湾开了10年车厂做汽车装配;二是2003年看到大陆的发展前景,跨海到义乌做贸易;三是2009年在大陆重拾蚵仔煎这一老本行。

  “死小孩,家里很忙还不赶紧回来。”陈人泽向记者绘声绘色地模仿父母当年从电话传来的埋怨。但他还是选择留在大陆发展,“当然要留在这,见证它强起来。”

  十几年来,陈人泽带着他的蚵仔煎,奔波于大陆大大小小的美食展做展销,也“跑透了”大陆的大好河山。

陈人泽正在制作“蚵仔煎”秘制酱汁。 吕明 摄陈人泽正在制作“蚵仔煎”秘制酱汁。 吕明 摄

  “大陆的地理我知道,小时候教科书上都有写!”《三国演义》是陈人泽的启蒙读本,一有时间,他就跑去看看书中的城市,如赤壁、荆州、襄阳、南充等。到常山赵家庄时,他尤为兴奋,这是常胜将军赵子龙的故居,赵子龙是他最爱的三国人物。

  奔走于天南海北,他感慨于大陆幅员辽阔,风味小吃数不胜数,每个地方有不同的文化特色与人文风情,“北方美食量大,南方菜精致小巧、味偏酸甜,西北面食堪称一绝”。他笑说:“如果到四川做蚵仔煎,得做成麻辣味才有人吃。”

  陈人泽也感慨大陆基础设施建设特别是交通的进步,“现在,许多城市之间‘一日生活圈’形成了。十几年来,大陆人的生活是往上升的。”

  三年前,陈人泽机缘巧合来到福州,看准当地夜市经济的发展前景,一头扎进福州夜市做连锁小吃,推广台湾蚵仔煎。

  “东西煮出来是对客人的责任,味道失之毫厘,客人都吃得出来。”三年来,他根据当地人的口味以及客户的反馈,不断调整食材出搭配比例,这是他的摊铺受顾客青睐的原因。

  今年,陈人泽想把蚵仔煎摊铺开到闽南,极具人流量的旅游胜地曾厝垵成为首选。他表示,希望能在与台湾人文风情相似的闽南,推广更丰富的台湾美食。

  “陈家蚵仔煎”春节打烊,不少老顾客纷纷在微信上问陈人泽什么时候可以再吃到蚵仔煎。“尽快尽快,只要钓牡蛎的渔民开工,我就复工。”陈人泽乐呵呵答道。(完)

  • 诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

      相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

      你或身边人正在用的某些药物,很有可能就来自他们的贡献。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

      一、夏普莱斯:两次获得诺贝尔化学奖

      2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

      今年,他第二次获奖的「点击化学」,同样与药物合成有关。

      1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

      虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

      虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

      有机催化是一个复杂的过程,涉及到诸多的步骤。

      任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

      不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

      为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

      点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

      点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

      夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

      大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

      大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

      大自然的一些催化过程,人类几乎是不可能完成的。

      一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

       夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

      大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

      在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

      其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

      诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

      他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

      「点击化学」的工作,建立在严格的实验标准上:

      反应必须是模块化,应用范围广泛

      具有非常高的产量

      仅生成无害的副产品

      反应有很强的立体选择性

      反应条件简单(理想情况下,应该对氧气和水不敏感)

      原料和试剂易于获得

      不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

      可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

      反应需高热力学驱动力(>84kJ/mol)

      符合原子经济

      夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

      他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

      二、梅尔达尔:筛选可用药物

      夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

      他就是莫滕·梅尔达尔。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

      为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

      他日积月累地不断筛选,意图筛选出可用的药物。

      在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

      三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

      2002年,梅尔达尔发表了相关论文。

      夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      三、贝尔托齐西:把点击化学运用在人体内

      不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

      诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

      她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

      这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

      卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

      20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

      然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

      当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

      后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

      由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

      经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

      巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

      虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

      就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

      她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

      大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

    诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

      贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

      在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

      目前该药物正在晚期癌症病人身上进行临床试验。

      不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

    「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

      参考

      https://www.nobelprize.org/prizes/chemistry/2001/press-release/

      Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

      Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

      Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

      https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

      https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

      Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

    中国网客户端

    国家重点新闻网站,9语种权威发布

    大星彩票地图